
AMPHION : Automatic Programming for
Scientific Subroutine Libraries

Michael Lowry, Andrew Philpot, Thomas Pressburger, and Ian Underwood

AI Research Branch, NASA Ames
Recom Technologies, M.S. 269-2
Moffett Field, CA 94035

Abstract. This paper describes AMPHION1, a knowledge-based software engi-
neering (KBSE) system that guides a user in developing a formal specification of
a problem and then implements this specification as a program consisting of calls
to subroutines from a library. AMPHION is domain independent and is specialized
to an application domain through a declarative domain theory. A user is guided
in creating a diagram that represents the formal specification through menus
based upon the domain theory and the current state of the specification. The dia-
gram also serves to document the specification. Program synthesis is based upon
constructive theorem proving, and is efficient and totally automatic.

1 Introduction

Subroutine libraries are one of the most prevalent forms of software reuse, particularly
within the scientific programming community. However, users seldom have the time or
inclination to fully familiarize themselves with even well-documented libraries. The re-
sult is that most users lack the expertise to properly identify and assemble the routines
appropriate to their applications. This represents an inherent knowledge barrier that
lowers the utility of even the best-engineered software libraries: the effort to acquire the
knowledge to effectively use a library is often perceived as being more than the effort
to develop the code from scratch. In domains with mature subroutine libraries, intelli-
gent systems technology can greatly improve the productivity and quality of software
engineering by automating the effective use of those libraries.

This paper describes a methodology for constructing an intelligent system that
guides a user in creating a formal problem specification, and then automatically gener-
ates a program for this specification composed of subroutines from a library. The ob-
jective is to enable users who are familiar with the basic concepts of an application
domain to program at the level of abstract domain-oriented problem specifications,
rather than at the detailed level of subroutine calls. The domain-independent part of this
methodology has been implemented in the AMPHION system, which includes generic
specification acquisition and program synthesis subsystems. AMPHION is applied to an
application domain by developing a declarative domain theory through the methodolo-
gy described in this paper.

This methodology will be described by presenting AMPHION’s application to the do-
main of solar system kinematics. (AMPHION applications in the domains of numerical
aerodynamic simulation and space shuttle flight planning are currently under develop-
ment.) A domain theory was developed that includes an abstract formalization of the
domain suitable for expressing problems, and also includes the knowledge needed to

1. Amphion, son of Zeus, played his magic lyre to charm the stones around Thebes
into position to form the city’s walls.

implement solutions to these problems using JPL’s SPICELIB subroutine library.
SPICELIB provides a tool kit for planetary scientists to construct programs analyzing the
geometry of science observations for interplanetary missions. Typical problems include
eclipses, occultations, moon shadows, and illumination angles. SPICELIB subroutines
provide access to planetary ephemerides (the positions and velocities of planets as a
function of time), spacecraft trajectories, and operations in analytic geometry. Compli-
cating factors include the necessity of light-time correction over astronomical distances,
and a plethora of formats and representations for locations, directions, and time.

AMPHION has undergone substantial testing with planetary scientists and has been in-
stalled at JPL for alpha testing in preparation for distribution to the planetary science
community. New users are able to use AMPHION after a one hour tutorial. It usually
takes a user an order of magnitude less time to develop a specification with AMPHION
than to write and debug the corresponding program. In particular, experienced AM-
PHION users develop specifications in five minutes that take the SPICELIB developers an
hour to code manually. New AMPHION users can develop a specification within fifteen
minutes that take new users of SPICELIB a couple of days to develop a correctly working
program. Further productivity gains are achieved through specification reuse and mod-
ification: the abstract graphical notation makes it much easier to identify the required
modifications in a diagrammatic specification than it is to trace through dependencies
in code. AMPHION’s editing operations facilitate making the required modifications.
Furthermore, there is no possibility of introducing bugs in the code, since AMPHION
generates a new program from scratch for the modified specification. The specification
in Figure 2 was generated in a few minutes by modifying a previous specification. The
minor modifications to the specification resulted in substantially different programs, il-
lustrating the advantages of specification modification versus program modification.
These productivity improvements are consonant with the anticipated benefits of a spec-
ification-based software-engineering life cycle envisioned in [1].

AMPHION uses deductive synthesis [7] to routinely generate programs in this domain
consisting of dozens of subroutine calls in under three minutes of CPU time on a Sun
Sparc 2. Over a hundred programs have been generated to date. Because of the deduc-
tive synthesis, the programs are guaranteed to be correct implementations of users’
specifications with respect to the domain theory.

To date, AMPHION has demonstrated the following capabilities essential for real-
world KBSE: Users without training in formal methods readily develop domain-orient-
ed diagrams denoting formal specifications using AMPHION’s specification acquisition
tools. Users can reuse, modify, and maintain previously developed specifications;
thereby elevating software evolution from the code level to the specification level. Au-
tomatic deductive program synthesis achieves acceptable performance, given an appro-
priately structured domain theory and moderate use of theorem-proving tactics.

Section 2 of this paper presents an overview of the AMPHION system. Section 3 pre-
sents an example problem, its specification, and the program synthesized by AMPHION.
Section 4 describes the domain-engineering methodology for the domain theory and
overviews key steps in the example program synthesis. Section 5 describes AMPHION’s
generic specification acquisition subsystem. Section 6 summarizes the main points of
the paper and compares it to previous work. The theorem-proving component is de-
scribed in [9]. The theorem-proving tactics that make deductive program synthesis trac-
table for the specialized task of subroutine composition as well as an empirical analysis
of program synthesis performance are presented in [6].

2 AMPHION System Overview

Figure 1 presents a flow diagram of AMPHION, where the dotted lines enclose sub-
systems, the rectangles enclose major components, and the rounded boxes enclose in-
formation. AMPHION is applied to a new domain by defining a domain theory and
theorem-proving tactics. The domain theory is automatically translated into tables that
drive the graphical user interface. The domain theory together with the theorem-proving
tactics are used by the SNARK first order logic (FOL) theorem prover [9] both to check
a specification and also to generate an applicative program. These three sources of in-
formation — the domain theory, derived user interface tables, and theorem-proving tac-
tics — constitute the domain specific subsystem of an AMPHION application.

The graphical user interface (GUI) and the specification checker constitute the spec-
ification acquisition subsystem. A diagram developed interactively with the GUI is an
alternate surface syntax for a formal problem specification in FOL augmented with the
lambda calculus.Lambda is used for binding input variables, while the constructive ex-
istential quantifierfind is used for binding output variables. Diagrams are equivalent to
specifications of the following form (more general specifications must currently be en-
tered textually):

 lambda (inputs) find (outputs) exists (intermediates)
conjunct1 & .. & conjunctN

where each conjunct is either a constraint,P(v1,..,vm) , or an equation defining a vari-
able through a function application,vk = f(v1, .., vm).

AMPHION checks a specification by attempting to solve an abstracted version of the
problem. If AMPHION cannot solve the abstracted problem, it employs heuristics to lo-
calize errors in the specification and give the user appropriate feedback. For example,
if an output or intermediate variable cannot be solved in terms of the input variables,
then that variable is under-constrained.

The program synthesis subsystem consists of an applicative program generator and

USERDomain
Theory

Theorem
Proving
Tactics

User Interface
Tables

Formal
Specification

Applicative
Program

Interface
Compiler

Fortran
Converter

Specification
Checker

GUI

SNARK

CODE

Subroutine
Library

Domain Specific Subsystem Specification Acquisition Subsystem

Program Synthesis Subsystem

Figure 1: Flow diagram of AMPHION.

a translator into the target programming language (e.g.,FORTRAN-77 for the JPL
SPICELIB subroutine library). After a valid specification is developed, it is converted
into a theorem to be proved. The input variables of the specification are universally
quantified and the output variables are existentially quantified within the scope of the
input variables. An applicative program is synthesized through constructive theorem
proving. During a proof, substitutions are generated for the existential variables through
unification and equality replacement. The substitutions for the output variables are con-
strained to be terms in an applicative language whose function symbols correspond to
the subroutines in a library.

The terms for the output variables are then translated into the target programming
language through program transformations written in REFINE [8]. One set of transfor-
mations turns common subexpressions into lambda-bound variables in nested lambda
applications. Another set of transformations handles subroutines with multiple outputs.
Only the very last stage of the translation is programming-language specific: variable
declarations and the sequence of subroutine calls are generated in the syntax of the tar-
get language. Targeting other programming languages would only require minor mod-
ifications.

3 Example Problem

The following problem will be used in this paper to illustrate the structure of the domain
theory and key steps in program synthesis: A planetary scientist working on the Galileo
mission to Jupiter wants to compute the solar incidence angle at the point on Jupiter’s
surface at the center of the boresight of an instrument on Galileo. The solar incidence
angle is the angle between the surface normal and the apparent position of the sun. This
problem is formalized as follows within the domain theory (variable names in italics):
Let Solar-Incidence-Angle be the angle between two rays,SurfaceNormal and Ray-Intersec-

tion-Sun.
Let SurfaceNormal be the ray normal toJupiter-Body at the point Boresight-Intersection.
Let Ray-Intersection-Sun be the ray from the pointBoresight-Intersection to Sun-Body.
Let Boresight-Intersection be the intersection point of the rayBoresight andJupiter-Body .
Let Boresight be the ray from the location of Galileo-Orbiter at timeTGalileo in the direction of

Direction-2.
Let Direction-2 be the direction pointed by the instrumentGalileo-Camera at timeTGalileo.
Let Jupiter-Body be Jupiter at timeTJupiter.
Let Sun-Body be the Sun at timeTSun.
Let Photon-Sun-Jupiter be a photon fromSun-Body to Jupiter-Body.
Let Photon-Jupiter-Galileo be a photon fromJupiter-Body to Galileo-Orbiter arriving at time

TGalileo.
Let the representation ofSolar-Incidence-Angle, the output, be in radians.
Let the representation ofTGalileo, one input, be a string in the format for Galileo’s internal clock.
Let the representation ofGalileo-Camera, the other input, be an integer which identifies a partic-

ular instrument on Galileo-Orbiter.
Each of these sentences corresponds to a conjunct in the lambda form of the specifica-
tion. AMPHION’s specification language for this domain is at the level of abstract Eu-
clidean geometry (e.g., points, rays, ellipsoids, and intersections) augmented with
astronomical terms (e.g., photons and planets). There is no mention of implementation
level coordinate frames, units, and so on, except in defining representations for inputs
and outputs. These are introduced during program synthesis.

Figure 2 is the diagram created interactively with AMPHION for this problem. AM-
PHION translated this diagram to the lambda form of the specification, and then the pro-
gram synthesis subsystem generated theFORTRAN-77 program in Figure 3 in 96 seconds

Instrument-Id

Boresight-Intersection

Direction-2

Boresight

Galileo-Camera

Angle-in-Radians
OUTPUT

Solar-Incidence-Angle

SurfaceNormal

Photon-Sun-Jupiter

Ray-Intersection-SunGalileo-Event

Photon-Jupiter-Galileo

TJupiterJupiter

Jupiter-Body

TGalileoGalileo-Orbiter

TSunSun

Sun-Body

Galileo-String-Time
INPUT

Galileo-Spacecraft-Time
repn

on

on

at-time

direction-of

towards

from

repn

between-ray2 between-ray1

at-point

normal-to

to

from

towards

from
at-timelocation-of

to

from

at-timebody-id

at-timebody-id

repn

time-sys

of-spacecraft

Figure 2: Diagram for solar incidence angle developed interactively with AMPHION.
SUBROUTINE SOLAR
 (INSTRU, GALILE, ANGLEI)
C Input Parameters
INTEGER INSTRU
CHARACTER*(*) GALILE
C Output Parameters
DOUBLE PRECISION ANGLEI
C Function Declarations
DOUBLE PRECISION VSEP
C Parameter Declarations
INTEGER JUPIT
PARAMETER (JUPIT = 599)
INTEGER GALIL
PARAMETER (GALIL = -77)
INTEGER SUN1
PARAMETER (SUN1 = 10)
DOUBLE PRECISION TIKTOL
PARAMETER (TIKTOL = 0.01)
C Variable Declarations
Deleted for lack of space
C Dummy Variable Declarations
INTEGER DMY10
DOUBLE PRECISION DMY20 (6)
DOUBLE PRECISION DMY60
DOUBLE PRECISION DMY61
LOGICAL DMY62
DOUBLE PRECISION DMY80 (6)
LOGICAL DMY170

CALL BODVAR (JUPIT, ‘RADII’, DMY10, RADJUP)
CALL SCS2E (GALIL, GALILE, E)
CALL SCE2T (INSTRU, E, S)
CALL SPKSSB (GALIL, E, ‘J2000’, PVGALI)
CALL SPKEZ (JUPIT, E, ‘J2000’, ‘NONE’, GALIL,

DMY20, LTJUGA)
CALL CKGPAV (INSTRU, S, TIKTOL, ‘J2000’, C,

DMY60, DMY61, DMY62)
CALL VEQU (PVGALI (1), V1)
X = E - LTJUGA
CALL VEQU (C (3, 1), V3)
CALL SPKSSB (JUPIT, X, ‘J2000’, PVJUPI)
CALL SPKEZ (SUN1, X, ‘J2000’, ‘NONE’, JUPIT,

DMY80, LTSUJU)
CALL BODMAT (JUPIT, X, MJUPIT)
CALL MXV (MJUPIT, V3, XV3)
CALL VEQU (PVJUPI (1), V2)
X1 = X - LTSUJU
CALL VSUB (V1, V2, DV2V1)
CALL SPKSSB (SUN1, X1, ‘J2000’, PVSUN1)
CALL MXV (MJUPIT, DV2V1, XDV2V1)
CALL VEQU (PVSUN1 (1), V)
CALL SURFPT (XDV2V1, XV3, RADJUP (1),
 RADJUP (2), RADJUP (3), P, DMY170)
CALL SURFNM (RADJUP (1), RADJUP (2),
 RADJUP (3), P, PP)
CALL VSUB (P, V2, DV2P)
CALL MTXV (MJUPIT, DV2P, XDV2P)
CALL VSUB (V, XDV2P, DXDV2V)
CALL MXV (MJUPIT, DXDV2V, XDXDV2)
ANGLEI = VSEP (XDXDV2, PP)
 RETURN
 END

Figure 3: SOLAR program generated by AMPHION from Figure 2.

of CPU time on a Sparc 2. The appearance of icons and edges in a diagram can be mod-
ified to a user’s preference. The general convention for edges in Figure 2 is that they are
directed from defining variables to defined variables; the label on an edge describes the
role of a defining variable in defining a defined variable. The function for defining a
variable in terms of other variables is not displayed, but can be readily inferred from the
edges leading into a defined variable. Rays and photons are an exception to this conven-
tion for edge direction. Photons denote constraints for light-time correction.

4 Domain Engineering

An AMPHION domain theory encodes the knowledge needed to correctly use the subrou-
tines in a library. AMPHION’s purpose is to map a problem specification to the function-
ality embedded in a subroutine library; the resulting program then solves the problem.
AMPHION does not synthesize or verify the subroutines themselves. An AMPHION do-
main theory consists of an abstract theory that provides the background knowledge and
specification language for formulating problems, a concrete theory for formalizing the
subroutines, and an implementation relation between the abstract and concrete theory.
The style of axiomatization is similar to algebraic specifications for abstract data types:
in essence abstract types and operations are created for the abstract theory, and then also
for the concrete theory. The operations are then axiomatized, with particular emphasis
on the implementation relation between abstract and concrete types and operations.

Developing the abstract theory is not a straightforward process of formalizing an ex-
isting ontology, rather it is a creative iterative process that, if done well, results in a con-
ceptual framework that guides users in formulating their problems. An iterative
refinement methodology was used for creating the abstract domain theory for solar sys-
tem kinematics, similar to that espoused by Lakatos [4]. Starting with informal require-
ments for a set of nine typical problems in this domain, a domain expert and experts in
KBSE concurrently developed the vocabulary and formal specifications for these prob-
lems. Several iterations were required over a period of a couple of weeks to develop a
satisfactory vocabulary in which all the problems could be succinctly and naturally de-
scribed.

The structure of an AMPHION domain theory will be illustrated in the following sub-
sections using fragments of the domain theory needed to solve the Galileo example. The
axioms have been simplified for purposes of presentation, mainly by including only one
dimension of representational choice – coordinate frames – and omitting other dimen-
sions of representational choice, such as time systems and coordinate systems.

4.1 Abstract Theory

The abstract domain theory includes types for objects in Euclidean geometry augment-
ed with astronomical constructs such as photons, planets (modeled by ellipsoids), and
spacecraft. Abstract types are independent of any particular representation. Abstract
functions include constructors for derived types, such as the constructor for a ray from
a point and a direction, and their corresponding selectors. Geometric operations are also
included as abstract functions, such as intersecting one geometric object with another.
The abstract relations include geometric predicates, such as whether one geometric ob-
ject intersects another.

The semantics of functions and relations that correspond to concrete subroutines are
defined by the implementation axioms. The subsection on the implementation relation
below describes how the functionintersect-ray-ellipsoid, which determines the point
where a given ray first intersects an ellipsoid, is axiomatized. The semantics of the re-

maining functions and relations fall into two categories. First are those that are defini-
tions based on other abstract functions and relations. For example, the equatorial plane
of a planet is defined as the plane perpendicular to the north pole at the center of a plan-
et. The second category are non-definitional axioms among abstract functions and rela-
tions. For example, the relationlightlike? between two bodies at two different times
holds if a photon leaving the center of the first body at the earlier time would arrive at
the center of the second body at the later time. Photons in a diagram are rewritten into
lightlike? relations. Thelightlike? relation is axiomatized in terms of two abstract func-
tions, which in turn are axiomatized in the implementation relation: the functiona-re-
ceivedreturns the time a signal would be received on ther-body if it was sent froms-
body at times-time; the functiona-sent is the inverse. The following axioms mutually
define thelightlike? relation and thea-received anda-sent functions (all variables are
universally quantified):

lightlike?(s-body,s-time, r-body, a-received(s-body,r-body, s-time))
lightlike?(s-body,a-sent(s-body, r-body, r-time), r-body, r-time)

Given a set oflightlike? relations translated from photons in a diagram, the theorem
prover generates substitution terms consisting of applications of thea-receivedand
a-sent functions for all the sending- and received-time logical variables. This is done
through unification during a unit resolution of the (negated) specification and one of the
axioms above. For the Galileo example in Figure 2, two such terms are generated
(whereTGalileo is declared to be an input to the program):

TJupiter← a-sent(Jupiter, Galileo-Orbiter, TGalileo)
TSun ← a-sent(Sun, Jupiter, TJupiter)

These abstract terms are later transformed into subroutine calls involving light-time
correction (e.g., thespkezSPICELIB subroutine), taking into account necessary time-sys-
tem conversions, in a manner similar to the derivation described below.

4.2 Concrete Theory and Implementation Relation

The concrete theory defines types used in implementing a program. The Galileo exam-
ple uses the type 3Vector, which is a vector of three reals that variously represent a spa-
tial position, direction, or the lengths of the three radii of an ellipsoid. In general, there
is a many-to-many correspondence between abstract types and concrete types. Howev-
er, any particular instance of a concrete type represents only one abstract type, defined
through anabstraction map. The implementation relation is axiomatized in the style of
Hoare [3] through these abstraction maps from concrete types to abstract types. These
abstraction maps are often parameterized. To facilitate posting constraints on abstrac-
tion maps, the abstraction maps are also reified.Abs is used to apply a reified abstraction
map to a concrete object, e.g.,abs(coord-to-point(F), c) denotes applying the abstrac-
tion mapcoord-to-point, parameterized on the coordinate frameF, to the 3Vectorc. A
frame is an origin and three perpendicular axes.Coord-to-dir is a similar abstraction
map for directions.Radii-to-ellipsoidmaps the lengths of three radii to an ellipsoid, giv-
en a coordinate frame assumed to be aligned along the ellipsoid’s axes.

The functions of the concrete theory denote subroutines in the target subroutine li-
brary. The SPICELIB subroutinesurfpt,given the coordinates of an observation point, the
coordinates of an observation direction, and three radii of an ellipsoid assumed to be
aligned along the coordinate frame; returns the coordinates where the observing vector
first intersects the ellipsoid. The observation point and direction, as well as the intercept
coordinate, must all be represented in the coordinate frame defined by the ellipsoid.

The following equation is a typical implementation axiom: it defines how the ab-

stract functionintersect-ray-ellipsoid – used in the Galileo example – is implemented
by the target language functionsurfpt:

intersect-ray-ellipsoid (origin-and-direction-to-ray(
 abs(coord-to-point(F), oc),

 abs(coord-to-dir(F), dc)),
 abs(radii-to-ellipsoid(F), radii))
= abs(coord-to-point(F), surfpt(oc,dc,radii))

This equation, like all the implementation axioms, has the structure of a commutative
diagram: applying the abstract function to the abstraction of the concrete inputs yields
the same result as abstracting the output of applying the concrete function to the con-
crete inputs. This axiom also expresses the constraint that the concretesurfpt function
implements the abstractintersect-ray-ellipsoid function only when the ellipsoid frame,
the observing frame, the direction frame, and the frame for the intersection point are all
identical (e.g.,F).

To use this axiom in the Galileo example, the theorem prover must introduce a co-
ordinate conversion between the coordinate frame for the ellipsoid –Jupiter-Frame –
and the coordinate frame for theBoresight ray. The latter is the standardJ2000 frame,
a helio-centered frame whose z-axis points to the north star in the year 2000. The eph-
emerides for planets and spacecraft are represented inJ2000. The introduction of this
coordinate conversion is done through one of the axioms defining coordinate frame
conversions (the other axioms define these conversions as a group of transformations):

abs(coord-to-point(f1),v) = abs(coord-to-point(f2), coord-convert(f1,f2,v))

The following conjunct definesBoresight-intersectionat an intermediate step in the
program derivation:

Boresight-Intersection =
 intersect-ray-ellipsoid (origin-and-direction-to-ray(

 abs(coord-to-point(J2000), Galileo-Event),
 abs(coord-to-dir(J2000), Direction-2)),

 abs(radii-to-ellipsoid(Jupiter-Frame), Jupiter-radii))
Equality replacement (paramodulation) with the coordinate conversion axiom above
and a similar one for direction conversion yields a transformed conjunct with two new
logical variables for frames, F1 andF2:

Boresight-Intersection =
 intersect-ray-ellipsoid (origin-and-direction-to-ray(

 abs(coord-to-point(F1), coord-convert(J2000,F1,Galileo-Event)),
 abs(coord-to-dir(F2), dir-convert(J2000,F2,Direction-2))),
 abs(radii-to-ellipsoid(Jupiter-Frame), Jupiter-radii))

The right hand side of this equation unifies with the left hand side of theintersect-ray-
ellipsoid implementation equation, with the following substitutions:

F ← Jupiter-Frame F1← Jupiter-Frame F2← Jupiter-Frame
Then, again through paramodulation, the following concrete-level definition is gener-
ated for theBoresight-Intersection point:

Boresight-Intersection =
abs(coord-to-point(Jupiter-Frame),
 surfpt-intercept(coord-convert(J2000,Jupiter-Frame,Galileo-Event),

 dir-convert(J2000,Jupiter-Frame,Direction-2),
 Jupiter-radii)

5 Specification Acquisition

AMPHION’s GUI achieves the benefits associated with structured editors and visual pro-
gramming paradigms - but at the specification level rather than the program level. Fur-
thermore, the information needed to instantiate the GUI is derived from the declarative
domain theory. This guarantees consistency between the specification acquisition sub-
system and the program synthesis subsystem when a domain theory is updated. The
GUI’s cascading menus for adding and refining objects in a specification diagram in-
corporate the functionality of a structured editor by presenting a user with a template
for defining/refining an object according to the syntax of the domain theory. The slots
in these templates are themselves menus enumerating the possible choices, given the
current state of the specification. A user can also directly manipulate the icons and edg-
es in a specification diagram, as in a visual programming environment, with the GUI
disallowing actions that would violate the domain theory. The net effect of these capa-
bilities is that a user does not need to learn the syntax of a textual specification language
or the terminology of formal logic to develop problem specifications with AMPHION.

The specification acquisition subsystem incorporates a number of additional mech-
anisms that greatly facilitate users’ developing correct specifications. The GUI ensures
that specifications are well-defined by enforcing a well-founded ordering based on one
object being used in the definition of another object. The GUI has top-down, bottom-
up, and selected-object(s) modalities that support different methodologies for develop-
ing well-defined specifications. A specification is also semantically checked before
program synthesis by attempting to solve an abstracted version of the specification, ob-
tained by deleting conjuncts defining concrete representations for program inputs and
outputs. If a valid abstract program cannot be derived, then the user is given feedback
identifying errors such as over-constrained and under-constrained variables.

A domain theory developer can also allow overloading of the abstract functions and
relations used in developing a specification. This reduces clutter in a diagram, and more
importantly enables a user to think about the semantics of a problem rather than syntac-
tic issues of typing. In general, whenever it is obvious how one type can be coerced into
another type; then overloaded types, functions, and relations are defined for use by the
GUI. From a table of coercions, AMPHION creates an expanded domain theory for the
GUI. Axioms are generated defining the types, functions, and relations in the expanded
GUI theory in terms of the types, functions, and relations in the domain theory. These
axioms enable AMPHION to translate specifications developed in the expanded GUI the-
ory to the more restricted theory used for program synthesis. The expanded GUI domain
theory abstracts away irrelevant syntactic detail for the user while still ensuring that
specifications are typed correctly for program synthesis.

For example, a body (a planet or moon) can be viewed as the point defined by its
center. In the expanded GUI theory, a new supertype is generated calledCoercible-to-
point, of which body is a subtype. Functions likedistance are overloaded with these su-
pertypes, and the axioms defining these overloaded functions are generated:

 overloaded-distance(x,y) = distance(coerce-to-point(x), coerce-to-point(y))
The functioncoerce-to-point coerces its argument, whatever type it may be, into a
point, according to the entries in the table of coercions. The action ofcoerce-to-point
on bodies could be defined as follows:

isbody?(b) => coerce-to-point(b) = center-of(b)
However, in AMPHION this coercion axiom is reformulated as an unconditional equality
which is used as a more efficient unconditional rewrite rule:

coerce-to-point(body(b)) = center-of(b)

In the axiom above, the functionbody is aretract [10] which serves the same role as the
type predicate in the conditional equality.

6 Related Work and Summary

This work is most closely related to that of Tyugu [11] in which software is also com-
posed from subroutine libraries, but in contrast to Tyugu uses full predicate logic in-
stead of intuitionistic propositional logic. The formal approach to domain-specific
software design environments taken in this work contrasts with the ad-hoc approach
championed by Fisher [2] and previous approaches to domain-specific automatic pro-
gramming [5].

This paper has described a methodology for creating specification-based program-
ming environments for domains with mature subroutine libraries. Raising development,
modification, and reuse to the specification level eliminates an inherent knowledge bar-
rier to using even the best-engineered subroutine libraries. This methodology has been
implemented in the AMPHION system, which includes generic specification acquisition
and automatic program synthesis subsystems driven by a declarative domain theory.
AMPHION is applied to a domain by developing a domain theory structured according
to the methodology described in this paper.

Acknowledgments

Mark Stickel developed the SNARK FOL theorem prover and with Richard Waldinger
adapted SNARK to deductive program synthesis. Waldinger aided reformulating a ver-
sion of the domain theory adapted to a previous theorem proving platform to SNARK’s
notation, and collaborated in running initial test cases through SNARK. The anonymous
reviewers, Jeffrey Van Baalen, and Linda Wills provided valuable advice for revising
this paper.

References

1. C. Green, D. Luckham, R. Balzer, T. Cheathan, and C. Rich: Report on a Knowledge-Based
Software Assistant, in C. Rich, R.C. Waters (eds.): Artificial Intelligence and Software Engi-
neering. Los Altos: Morgan Kaufmann, 1986, 337-428.

2. G. Fischer: Domain-Oriented Design Environments, KBSE’92, 204–213.
3. C.A.R. Hoare: Proof of Correctness of Data Representations, Acta Informatica 1, 271-281.
4. E. Lakatos: Proofs and Refutations, J. Worrall (ed.), Cambridge University Press, 1976.
5. M. Lowry and R. McCartney (eds.): Automating Software Design, MIT Press 1991.
6. M. Lowry, A. Philpot, T. Pressburger, and I. Underwood: A Formal Approach to Domain-Ori-

ented Softwre Design Environments, KBSE’94.
7. Z. Manna and R. Waldinger: Fundamentals of Deductive Program Synthesis, IEEE Transac-

tions on Software Engineering (18) 8, August 1992, 674-704.
8. D.R. Smith: KIDS: A Semiautomatic Program Development System, IEEE Transactions on

Software Engineering 16,9 (1990), 1024-1043.
9. M. Stickel, R. Waldinger, M. Lowry, T. Pressburger, and I. Underwood: Deductive Composi-

tion of Astronomical Software from Subroutine Libraries, 1994, in CADE-12.
10. J. Stoy: Denotation Semantics: the Scott-Strachey approach to programming language seman-

tics. MIT Press, 1977.Retract defined on page 133.
11. E.H. Tyugu,Knowledge-Based Programming, Turing Institute Press, Glasgow, Scotland,

1988.

